

Handshake across the Jordan: Water and Understanding

in Pella, Jordan

Mixing Time for the Dead Sea Based on Water and Salt Mass Balances

Raed Bashitialshaaer, Mohammad aljaradin

Lund University, Sweden

Jointy organised by the Unit of Hydraulic Engineering (University of Innsbruck, Austria) and the Jordan University of Science and Technology (Irbid, Jordan)

- CONTENTS
- I. INTRODUCTION
- I. OVERVIEW OF THE STUDY AREA
- III. METHODOLOGY
- **IV. RESULT AND DISCUSSION**
- V. CONCLUSIONS

Faculty of Engineering at Lund University, Lunds Tekniska Högskola-Water Resources Engineering

Introduction

- Lowest Place on Earth
- Saltiest Body of Water
- Geological Complexity
- Drop in Sea Level
- Land Deterioration
- Water Pollution
- Technical and Political
- Medicinal Treatments
 Proposed Red Sea-Dead
 Sea Canal Project (RSDSC)
 yearly water (≈):
- Total water = 2000 MCM
- Fresh water = 850 MCM
- Brine water = 1100 MCM

Introduction

Dead Sea modeled by water and salt balances considering differences in salinity and including and excluding the proposed (RSDSC) in:

- Single Simple Box (well-mixed system) and
- Two- Layer Box (stratified system)
- Evolution and predicted over 100-years
 - Volume, Elevation, Surface area, cumulative height and
 - Exchange time (mixing time)
- Historical evolution over 30-years compared regarding
 - Water mass balance and Salt mass balance
- The whole study have been implemented and developed using the LOICZ Biogeochemical Modeling Guidelines

Overview of the Study Area

Volume (km ³)		Area (km²)		Elevation (m)				Rai (n	infall nm)	Evaporation (mm)		
1983	1997	1983	19	997 1983		3	1997		min	max	min	max
155	131	950	64	40 -390)	-411		70	90	1300	0 1600
Output/Input				Annually			, MCM		Density, kg/m ³		Salinity, ppt	
					min		max	min		max	min	max
Industrial intake (outflow)					450		550	12	50	1350	300	400
Industrial Brine (inflow)				200			250	13	00	1400	400	500
Brine disposal (inflow) RO					1000		1200	10	25	1060	60	75
Evaporation				832			1024	1000		1000		
Rainfall				44.8			57.6	10	00	1000		
River inflow				350			400	10	00	1050	20	30

Data from June 1998 to December 2007 at the Ein-Gedi 320 station shows that the DS is stratified of the first 10% of the maximum depth

Chemistry of the Dead Sea

Dead Sea chemical composition from 1961 to 2006

EI	Dead Sea Concentration, (g/l)							RS	MS
em ent	1961	1969	1981	1994	2006	2005	Conc. (g/l)	Conc. (g/l)	Conc. (g/l)
CI	180.8	208.0	216.0	219.25	224.0	228.6	0.474	23.46	22.90
Mg	34.50	41.96	42.5	42.43	44.0	47.1	0.071	1.558	1.490
Na	33.50	34.94	34.3	39.70	40.1	34.3	0.253	13.34	12.70
Ca	13.00	15.80	17.1	17.18	17.65	18.3	0.080	0.685	0.470
K	6.30	7.56	6.65	7.59	7.65	8.0	0.015	0.466	0.470
Br	4.10	5.92		5.27	5.30	5.4	0.004	0.086	0.076

Results from Previous Studies

- Gavrieli and Bein (2006) studied a period of 40 years
 - RSDSC diversion capacity of 60m³/s
 - \succ Two scenarios were studied \pm (RSDSC)
 - Reaches to 400.5 and 444.4m bmsl respectively
- Asmar & Ergenzinger (2002) studied 50 years period for two-layer
 - Two scenarios were studied (water & salt balance)
 - Reaches to 389 and 396m bmsl respectively
- Al-Weshah (2000) studied two scenarios 50-years for water balance
 - First assumed a diversion of 70 m³/s gives a level of 395m bmsl
 - > Second assumed a diversion of 60 m³/s gives a level of 400.5

Methodology

Two-layer systems (stratified system)

Simple-single-box (well-mixed system)

Result and Discussion

Single-layer versus two-layer system

- A mathematical model was developed for 100-yrs period
- The model has been implemented using the idea of LOICZ Biogeochemical Modeling
- Including and excluding the proposed RSDSC
- Calculation by eliminating the terms that are equal to or close to zero
- Simple single box assumed as well-mixed system
- Two-layer box assumed as stratified system as the Dead Sea
- Assumption is due to vertical variations between upper and lower layers

Historical Data Comparison

Historical comparison in 30-years for the two models showed that:

- Significant variations during some years e.g. 1991 and 1992 rainfall
- Differences also may be caused by uncertainties in the potash company production and salts extracted from the Dead Sea
- The amount of salt production was found to be approximately 0.1m/yr as stated in previous studies

Result and Discussion

Results of	of single-layer and two-layer in the	RO dis	(%)		
first year	including salinity variations	Included	Excluded		
Simple	Water mass balance:				
Single	Residual Volume, Q _N (MCM/yr)		292.2	807.8	63.8
DUX	Residence Time, т (year)		57	110	48.2
	Salt mass balance:				
	Residual Volume, Q _N (MCM/yr)	MCM/yr)		427	69.1
	Residence Time, т (year)		58	116	50.0
Тwo	Entrainment Volume, <i>Q_{Deep'}</i> (MCM/yr)		138.3	426	62.8
Layers	Vertical Exchange Volume, Q_Z (MCM/y	r)	10561	7281	31.1
DUX	Exchange Time, r_{1}		1.2	1.7	29.8
	(year) 72		11	15.3	28

Result and Discussion

Dead Sea simulations for different scenarios including salinity variations

			Water Ma	ss Balance	9	Salt Mass Balance				
		RO included		RO excluded		RO inc	cluded	RO excluded		
Year		Single -layer	Two- layer	Single -layer	Two- layer	Single -layer	Two- layer	Single -layer	Two- layer	
1	Vol. km ³	131	131	131	131	131	131	131	131	
	Area km ²	640	640	640	640	640	640	640	640	
	H (m) (±)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	El. m bmsl	411	411	411	411	411	411	411	411	
90	Vol. km ³	157.0	149.3	59.1	51.39	142.7	162.9	93.0	113.0	
	Area km ²	701.4	683.7	427.8	398.4	668.4	714.6	538.1	594	
	H (m) (±)	19.63	13.98	-67.88	-77.26	9.1	23.85	-32.6	-14.73	
	El. m bmsl	391.4	397.0	479.0	488.6	401.9	387.15	443.6	425.7	

Predicted DS volume, surface area, elevation, and cumulative height for a 100-years in a single-layer and two-layer model for the water mass balance

Predicted DS volume, surface area, elevation, and cumulative height for 100-years in a single-layer and two-layer model for the salt mass balance

Conclusions

After 100-yrs with the current condition and additive of brine water:

- The prediction of the DS for shorter and longer periods were satisfied
- Results strongly depend on differences in salinity and brine discharge
- Exchange time or mixing time was significantly different; Two-layer model displayed much lower values than the single-layer model
- It is important to have a mixing time less than one year
- Less dense fluid in the upper layer implies a higher evaporation rate
- A single-layer model predicts a 1.4% and 2% better level than the twolayer model in the water mass balance with and without brine water
- A two-layer model yields a 3.7% and 4% better level than the singlelayer model in the salt mass balance with and without brine water
- Compared to previous studies, DS is a very complex dynamic system

